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We have designed possible structures of the isomers of midi-fullerenes, namely C40, C42, 

C44, C46, and C48; three the most natural mechanisms of their formation being used: fusion 

of carbon cupolas having the same symmetry; fusion of fullerenes having compatible sym-

metry and embedding carbon dimers into initial fullerenes. The energies of the fullerenes 

calculated through the use of molecular mechanics are presented together with their graphs. 

It is found that in the majority of cases the minimum-energy fullerenes are those, which 

have tetrahedral symmetries. The maximum-energy fullerenes refer to the three-fold  

T-symmetry. 
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1. INTRODUCTION 

The periodic system of fullerenes predicts their symmetry 

as well as the existence of their isomers having different 

symmetry [1,2]. The isomers can be got by different mech-

anisms. In Ref. [3] we have classified the natural mecha-

nisms of obtaining new fullerenes, namely: embedding a 

carbon dimer into an initial fullerene, fusion of the carbon 

cupolas having the same symmetry and fusion of the full-

erenes having compatible symmetry.  

In this contribution we present the classification of 

fullerene isomers, give their structure and energy in the 

range from C40 to C48 which can be produced through the 

use of these mechanisms. We will give the structure of the 

fullerenes for two extreme electronic configurations: with 

single bonds only and with single and double ones, the 

maximum number of possible double bonds being posi-

tioned symmetrically. 

2. PERFECT BASIC AND IMPERFECT  

INTERMEDIATE FULLERENES  

According to the periodic system of fullerenes, there are 

two main types of fullerenes; the perfect basic ones and 

imperfect intermediate ones. The perfect basic fullerenes 

have ideal structure and ordinary symmetry. The imper-

fect intermediate fullerenes have extra carbon dimers. By 

analogy with crystal physics, we have assumed [1] that 

these extra dimers play the role of defects which violate 

the symmetry and create local imperfections. However, 

for defect crystals the long-range order is observed exper-

imentally. In order to underline this peculiarity, such long-

range order is referred to as the topological long-range one 

[4]. Using analogous terminology, we have defined the 

imperfect fullerenes, which conserve the main axis of 

symmetry, as having topological symmetry.  
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3. ISOMERS OF FULLERENE C40 

A. ORDINARY SYMMETRY 

According to the periodic system of fullerenes [1,2] there 

are three perfect basic fullerenes C40 of different ordinary 

symmetry, namely, four-fold, five-fold and tetrahedral 

one. All of them can be obtained by the mechanism known 

as “the fusion of fullerenes or fullerene cupolas having 

compatible symmetry” [3]. 

3.1. Fullerene C40 of four-fold symmetry 

The fullerene was designed by the fusion of two cupolas 

C16 and C24 in Ref [5]; the energy was calculated in 

Refs. [5,6]. The fullerene is shown in Fig. 1. It consists of 

two tetragons, eight in-pairs adjacent pentagons and 

twelve hexagons forming four chains of three adjacent 

ones. It is a tetra2-penta8-hexa12 polyhedron. Here the at-

oms are painted grey-blue; the atoms showing the main 

symmetry are green; the interatomic bonds are blue. In the 

graphs, the tetragons are painted grey, the pentagons are 

goldish, and the hexagons are colored yellow. 

3.2. Fullerene C40 of five-fold symmetry 

There are two ways of joining cupolas C20: mirror sym-

metry and rotation reflection one. The both structures were 

designed in Ref. [7]; the energy was calculated in Ref. [6]. 

In the first case the fullerene consists of five tetragons, two 

pentagons and fifteen hexagons and has twenty-two faces 

(Fig. 2). It is a tetra5-penta2-hexa15 polyhedron. In the sec-

ond case one cupola is a rotary reflection of the other 

(Fig. 3). The fullerene obtained contains twelve pentagons 

and ten hexagons, the number of faces being the same. It 

is a penta12-hexa10 polyhedron. 

3.3 Fullerene C40 of tetrahedral symmetry 

Strictly speaking, the isomers of fullerene C40 were stud-

ied rather thoroughly in Ref. [7]. However, at that mo-

ment, the column of tetrahedral symmetry was not incor-

porated into the periodic system, we knew nothing about 

the existence of fullerene C40 having such symmetry, so it 

has been left beyond the scope of consideration. This 

drawback was corrected by the author of Ref. [8], who 

presented the structure of that perfect fullerene. Neverthe-

less, for completeness sake, it is necessary to know not 

only the structure, but the ways of obtaining it and its  

energy. 

Fig. 1. Fullerene C40 produced by the fusion of two cupolas C16 

and C24 of four-fold symmetry: structure, graphs and energy in 

kJ/mol. 

 

E=1439 

C40 

E=2051 

Fig. 2. Fullerene C40 obtained by the mirror symmetry fusion of 

two cupolas C20 of five-fold symmetry: structure, graphs and en-

ergy in kJ/mol. 

C40 

E=3181 

E=1694 

Fig. 3. Fullerene C40 obtained by the rotation-reflection sym-

metry fusion of two cupolas C20 of five-fold symmetry: structure, 

graphs and energy in kJ/mol. 

C40 

E=1808 

E=1210 
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Previously, studying the formation of electronic iso-

mers of tetrahedral fullerene C28, we designed them 

through the use of fusion reactions [9], in particular, 

C22+C6 → (C22C6) → C28 (fusion of a cupola with a ring) 

and C10+C18 → (C10C18) → C28 (fusion of a cupola with 

a bowl). It should be emphasized that in both cases the 

first reacting component has three-fold symmetry 

whereas the second refers to six-fold one. By analogy 

with fullerene C28, it seems reasonable to investigate re-

action C22+C18 → (C22C18) → C40, cupola C22 having 

three-fold symmetry and bowl C18 being of six-fold one. 

The reaction is shown in Fig. 4. Here the inactive at-

oms are painted grey-blue; the reactive atoms are done 

red-green; the interatomic bonds of cupolas are blue; the 

new bonds between the cupolas are green. For the final 

fullerene C40, the atoms showing three- and six-fold sym-

metry are specially marked, they being colored grey-tur-

quoise. In the graph below, the pentagons are painted bis-

cuit, the hexagons are done yellow. However, contrary to 

what might be expected from the addition reaction of pre-

vious cases, the fullerene obtained has no tetrahedral  

symmetry.  

Stone-Wales transformation. Sometimes an asym-

metric fullerene is undergone to Stone-Wales transfor-

mation [10] that is assumed eventually may lead to the en-

ergetically most stable and symmetric isomer [11–14]. 

The authors [10] considered “spheroidal molecules of sp2 

hybridized carbon atoms with different arrangements of 

the hexagonal and pentagonal rings. A notional process for 

interchanging the positions of hexagons and pentagons 

was illustrated. The rearrangement formally requires two 

sigma bonds to be broken and new bonds to be formed.” 

Afterwards it was more than once repeated in other  

studies. 

However, that scheme shows only an isolated event. 

When one has to deal with a whole molecule where many 

such events take place simultaneously, to our mind, it will 

be more illustrative and informative to use the graph  

language. 

For clarity’s sake, consider at first the Stone-Wales’ 

graph transformation for fullerene C40 with single bonds 

only (Fig. 5). Here the broken edges (bonds) are shown 

using red dot lines (b); the vertices (atoms) corresponding 

to the centers of tetrahedral symmetry are specially 

marked, they being painted bright-green (c); the other 

color designations are the same as before.  

Really, using three Stone-Wales’ transformations we 

obtained tetrahedral fullerene C40. The problem is left: 

how single and double bonds are located on the fullerene 

surface.  

The Stone-Wales’ transformation for fullerene C40 

which takes into account the location of single and double 

bonds is represented in Fig. 6.  

Fig. 4. Fullerene C40 obtained by the fusion of cupolas C22 with 

bowl C18: structure, graphs and energy in kJ/mol. 

C22 

C18 

E=371 

E=326 

E= 946 

C40 

C22 

C18 E=396 

E=619 

E=1550 

Fig. 5. Stone-Wales transformation of fullerene C40 obtained by 

fusion of cupolas C22 and C18: a) initial three-six fold-symmetry 

fullerene; b) Stone-Wales transformation; c) tetrahedral fullerene. 

→ 

b) a) 

→ 

c) 

Fig. 6. Stone-Wales transformation of fullerene C40 with single 

and double bonds: a) initial three-six fold symmetry fullerene; 

b) Stone-Wales transformation; c) and d) tetrahedral fullerenes. 

→ 

b) a) 

c) d) 

→ 
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The double bonds ensure electronic symmetry and sta-

bility of the fullerene. Now all the atoms, except four at-

oms, are connected with other ones by one double bond 

and two single ones. The four atoms lying on the tetrahe-

dral symmetry axes are painted bright-green. The edges 

which connect the vertices, corresponding to the centers 

of tetrahedral symmetry, with their neighbors are specially 

colored in brown (c).  

The polyhedron produced is presented in Fig. 7. It con-

tains four groups of three adjacent pentagons, ten hexagons 

and has twenty-two faces; therefore, it can be named sym-

metric penta12-hexa10 tetrahedral polyhedron C40.  

These results deserve detailed consideration. It is 

known that a sphere-shaped cluster C60 forms at high tem-

perature, so its structure is far removed from the structure 

of ideal Buckminster fullerene having Ih icosahedral sym-

metry. It is assumed [11] that annealing removes defects 

and reduces the potential energy of the cluster through the 

use of the Stone-Wales transformation. In our case there 

are no defects in the initial fullerene C40 having C3-sym-

metry (3-6-fold symmetry). Here the Stone-Wales trans-

formation induces only symmetry transition from C3 to T-

symmetry (tetrahedral symmetry). This leads to decreas-

ing the energy for the fullerene with single and double 

bonds that corresponds to the ground state. Yet for the full-

erene with only single bonds the effect is reverse. Follow-

ing the idea [14] one may assume that here the “ground” 

T-state is less stable and the “transition” C3-state is more 

stable. However, this is not explanation, but an ascertained 

fact.  

B. TOPOLOGICAL SYMMETRY 

According to the periodic system of fullerenes there can 

be three isomers C40 of topological symmetry [1]. They 

have three-fold S-symmetry, three-fold T-symmetry and 

six-fold one. All of them can be produced by one and the 

same mechanism, namely, by dimer embedding into the 

nearest-neighbor perfect fullerene which refers to the 

same column [3]. 

Fig. 7. Two electronic isomers of fullerene C40 obtained by fu-

sion of cupola C22 and bowl C18 with the subsequent Stone-

Wales transformation: structure, graphs and energy in kJ/mol. 

C40 before 

E=946 E=1475 

E=1326   E=961 

C40  after 

Fig. 8. Basic perfect fullerene C38 and its descendant, imperfect 

fullerene C40: structure, graphs and energy in kJ/mol. 
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C38 

C38 

E=1206 

C40 
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C40 
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3.4. Fullerene C40 of three-fold S-symmetry 

For fullerene C40, the nearest-neighbor perfect fullerene 

is C38, so fullerene C40 must contain one extra dimer. The 

parental fullerene and its direct descendant are designed 

in Ref. [15] and shown in Fig. 8. The parental fullerene 

contains twelve pentagons and nine hexagons; it is a 

penta12-hexa9 polyhedron. The descendant has the same 

number of pentagons but ten hexagons; it is a penta12-

hexa10 polyhedron. 

3.5. No fullerene C40 of three-fold T-symmetry 

The nearest perfect neighbor to fullerene C40 is fullerene 

C36 so fullerene C40 could contain two extra dimers. How-

ever, fullerene C36 is a dead-end one. It can grow only as 

a nonclassical fullerene what follows from its structure 

shown in Fig. 9. 

Consider the reasons in greater detail. In principle, 

any fullerene can be thought over as a primary fullerene 

having the possibility to use for growing the mechanism 

known as “embedding carbon dimers.” It was suggested 

in 1992 by M. Endo and the future Nobel Prize winner in 

chemistry (1996) H.W. Kroto [16]. According to it, a 

carbon dimer embeds into a hexagon of an initial fuller-

ene. This leads to stretching and breaking of the covalent 

bonds which are normal to the dimer and to creating new 

bonds with the dimer (Fig. 10). As a result, there arises a 

new atomic configuration and there is mass increase of 

two carbon atoms.  

However, it is necessary to take into account the near-

est circumference of a hexagon (Fig. 10c). 

From the figures above, of special note are the graphs, 

it follows that any hexagon of fullerene C36 has no diamet-

rically opposite pentagons, so the fullerene is the dead-end 

one. That is why, we exclude fullerene C36 from further 

consideration. 

3.6. Fullerene C40 of six-fold symmetry 

The nearest perfect neighbor to fullerene C40 is fullerene 

C36, so fullerene C40 must have two extra dimers. The pa-

rental fullerene C36 contains twelve pentagons and eight 

hexagons; it is a penta12-hexa8 polyhedron. The electronic 

isomers of parental fullerene are presented in Fig. 11. It 

should be emphasized that the electronic isomers with 

equal number but different location of single and double 

bonds have one and the same energy. 

The descendant fullerene C40 consists of twelve pen-

tagons and ten hexagons (Fig. 12). It is a penta12-hexa10 

polyhedron and has three permutational isomers. 

These results deserve further comment. From the 

Fig. 12 it follows that there are three isomers of fullerene 

C40 having one and the same topological symmetry but 

different shape. It is necessary to stress that we are dealing 

with the isomers which can be produced during the natural 

growth in the framework of the Endo-Kroto C2 insertion 

mechanism [16]. 

Fig. 9. Basic perfect fullerene C36: structure, graphs and energy 

in kJ/mol. 
 

C36 

E=2571 

  E=4065 

C36 

Fig. 10. a) Dimer embedding into a hexagon: b) transforming into 

two adjacent pentagons, c) nearest circumference of a hexagon. 
 

C36 

b) a) 

c) 
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In Ref. [17] we pointed out that the fullerenes have a 

layer structure. By analogy with geography, we separated 

two frigid zones and a torrid one. For fullerene C40, having 

six-fold symmetry, the frigid zones are composed of pen-

tagons and the torrid one of hexagons. The embedded di-

mers are located in the torrid zone, at the equator. The full-

erenes obtained may be named permutational isomers and 

be denoted as 11, 101, and 1001. Index 11 designates near-

est neighbors, index 101 shows second neighbors and in-

dex 1001 does third ones. The shape difference of isomers 

is connected with the diverse location of embedded dimers 

at the equator. 

4. ISOMERS OF FULLERENE C42 

A. ORDINARY SYMMETRY 

According to the periodic system of fullerenes [1,2] there 

is only one isomer C42 having ordinary three-fold T-sym-

metry [1].  

 

C40-11 

E=921 

E=2016 

C40-11 

E=960 

C40-101 

E=1755 

C40-101 

E=960 

C40-1001 

E=1776 

C40-1001 

Fig. 12. Imperfect fullerenes C40: structure, graphs and energy in 

kJ/mol. 

Fig. 11. Basic perfect fullerenes C36: structure, graphs and en-

ergy in kJ/mol. 
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4.1. Fullerene C42 of three-fold T-symmetry 

The fullerene was designed by the fusion of two cupolas 

C18 and C24. It is a tri2-penta6-hexa15 polyhedron (Fig. 13). 

B. TOPOLOGICAL SYMMETRY 

There are five isomers C42 of topological symmetry [1], 

namely, three-fold S-symmetry, four, five- six-fold and 

tetrahedral ones. All of them can be obtained by one and 

the same mechanism, namely, by dimer embedding into 

the preceding nearest-neighbor fullerene of the same col-

umn; a perfect or an imperfect fullerene, it makes no dif-

ference. 

4.2. Fullerene C42 of three-fold S-symmetry 

The nearest perfect neighbor is fullerene C38, so fullerene 

C42 contains two extra dimers. It consists of twelve penta-

gons and eleven hexagons forming a penta12-hexa11 poly-

hedron (Fig. 14). 

4.3. Fullerene C42 of four-fold symmetry 

The perfect nearest-neighbor is fullerene C40, so fullerene 

C42 contains one extra dimer. It consists of two tetragons, 

eight pentagons and thirteen hexagons (Fig. 15). The full-

erene was designed in Ref. [18]. It is a tetra2-penta8-hexa13 

polyhedron. 

4.4. Fullerene C42 of five-fold symmetry 

The perfect nearest-neighbor is fullerene C40, so fullerene 

C42 contains one extra dimer. It consists of three tetragons, 

six pentagons and fourteen hexagons (Fig. 16). It is a 

tetra3-penta6-hexa14 polyhedron.  

4.5. Fullerene C42 of six-fold symmetry 

The perfect nearest-neighbor to fullerene C42 is fuller-

ene C36, so fullerene C42 contains three extra dimers. It 

Fig. 13. Mirror symmetry fusion of two cupolas C18 and C24 of 

three-fold T-symmetry: structure, graphs and energy in kJ/mol. 

E=4253 

C42 

Fig. 14. Two dimers embedding into perfect fullerene C38 having 

three-fold S-symmetry: structure, graphs and energy in kJ/mol. 

 

E=1143 

C38 

C42 

E=999 

E=1256 

C42 

Fig. 15. Dimer embedding into perfect fullerene C40 having 

four-fold symmetry: structure, graphs and energy in kJ/mol. 

 

E=1323 

C42 

E=2519 

C42 
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consists of twelve pentagons and eleven hexagons and 

forms a penta12-hexa11 polyhedron (Fig. 17). 

From the Fig. 17 follows that there are three isomers 

of fullerene C42 having one and the same topological 

symmetry but different shape. As in the case of the iso-

mers of fullerene C40 having six-fold topological sym-

metry, the shape difference is connected with the di-

verse location of embedded dimers in the torrid zone, at 

the equator. The fullerenes obtained will be named per-

mutation isomers and be denoted as 111, 1101 and 

10101. Index 111 indicates that between the embedded 

dimers there are no hexagon sites; index 1101 points to 

the fact that two dimers are the nearest neighbors, and 

index 10101 designates that all the three dimers are sec-

ond neighbors.  

4.6. Fullerene of tetrahedral symmetry 

The nearest perfect neighbor is fullerene C40, so fuller-

ene C42 contains one extra dimer. It consists of two 

groups of three adjacent pentagons, a chain of six pen-

tagons and eleven hexagons, and has twenty-three 

faces. Therefore, it can be named imperfect penta12-

hexa11 polyhedron C42 having topological tetrahedral 

symmetry (Fig. 18). 

5. ISOMERS OF FULLERENE C44 

A. ORDINARY SYMMETRY 

According to the periodic system of fullerenes [1] there is 

only one isomer C44 having ordinary three-fold S-sym-

metry [1].  
 

C42-111 

 E=933 

E=948 

C42-1101 

E=1866 

C42-1101 

E=1042 

C42-10101 

E=1960 

C42-10101 

E=1894 

C42-111 

Fig. 17. Three dimers embedding into perfect fullerene C36 hav-

ing six-fold symmetry: structure, graphs and energy in kJ/mol. 

Fig. 16. Dimer embedding into perfect fullerene C40 having five-

fold symmetry: structure, graphs and energy in kJ/mol. 
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E=2755 

C42 

E=1372 
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5.1. Fullerene of three-fold S-symmetry 

It can be produced by the mechanism known as the fu-

sion of fullerenes or fullerene cupolas having compatible 

symmetry [3]. The fullerene was designed by the fusion 

of two cupolas C22 in Ref. [15] and is shown in Fig. 19. 

It contains two groups of six adjacent pentagons at the 

top and bottom, and twelve hexagons. It is a (penta-

hexa)12 polyhedron.  

B. TOPOLOGICAL SYMMETRY 

According to the periodic system of fullerenes there are five 

isomers C44 having topological symmetry [1], namely, 

three-fold T-symmetry, four-, five-, six-fold and tetrahedral 

ones. All of them can be obtained by dimer embedding into 

the perfect nearest-neighbor fullerene which precedes it in 

the same column.  

5.2. Fullerene of three-fold T-symmetry 

The perfect nearest neighbor is fullerene C42, so fullerene 

C44 must contain one extra dimer. It consists of two tri-

gons, four isolated pentagons, two adjacent pentagons, 

sixteen hexagons and has twenty-four faces. It is a tri2-

penta6-hexa16 polyhedron (Fig. 20). 

 Fig. 20. Dimer embedding into perfect fullerene C42 of three-fold 

T-symmetry: structure, graphs and energy in kJ/mol. 
 

C44 

E=2571 

E=4025 

C44 

Fig. 18. Dimer embedding into perfect fullerene C40 having tet-

rahedral symmetry: structure, graphs and energy in kJ/mol. 

 

E=936 

C42 

E=740 

C42 

Fig. 19. Basic perfect fullerenes C44: structure, graphs and en-

ergy in kJ/mol. 
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5.3. Fullerene C44 of four-fold symmetry 

The perfect nearest-neighbor is fullerene C40, so fuller-

ene C44 contains two extra dimers. The fullerene was de-

signed in Ref. [18]. It consists of two tetragons, eight 

pentagons and fourteen hexagons. It is a tetra2-penta8-

hexa14 polyhedron (Fig. 21). 

From the figure follows that there are two isomers of 

fullerene C44 having one and the same topological four-

fold symmetry but different shape. Similar to the isomers 

of fullerene C42 of topological six-fold symmetry, the 

shape difference is induced by the diverse location of em-

bedded dimers. The fullerenes obtained are permutation 

isomers and be denoted as a and s. Index a indicates that 

the embedded dimers are located in one and the same hem-

isphere, i.e., asymmetrically with respect to the main axis 

of symmetry; index s points to the fact that the dimers refer 

to different hemispheres and are located symmetrically. 

5.4. Fullerene C44 of five-fold symmetry 

The perfect nearest-neighbor is fullerene C40, so fullerene 

C44 must contain two extra dimers. It consists of two tet-

ragons, six pentagons and fourteen hexagons (Fig. 22). It 

is a tetra2-penta8-hexa14 polyhedron. 

Fig. 21. Two dimers embedding into perfect fullerene C40 having 

four-fold symmetry: structure, graphs and energy in kJ/mol. 
 

E=1323 

C44 a 

E=2533 

C44 a 

E=1343 

C44 s 

E=2586 

C44 s 

Fig. 22. Two dimers embedding into perfect fullerene C40 hav-

ing five-fold symmetry: structure, graphs and energy in kJ/mol. 
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One can see that there are two isomers of fullerene C44 

having one and the same topological five-fold symmetry 

but different shape. They are permutation isomers. The 

embedded dimers are located at the equator. The fuller-

enes obtained may be denoted as 11 and 101. Index 11 

designates nearest neighbors; index 101 shows second 

neighbors. The shape and energy difference of isomers is 

connected with the diverse location of embedded dimers 

at the equator. 

5.5. Fullerene C44 of six-fold symmetry 

The perfect nearest-neighbor to fullerene C44 is fullerene 

C36, so fullerene C44 contains four extra dimers. It consists 

of twelve pentagons and twelve hexagons (Fig. 23). It is a 

penta12-hexa12 polyhedron. 

There are three isomers of fullerene C44 having one and 

the same topological symmetry but different shape. As in 

the case of the isomers of fullerene C42 having six-fold 

topological symmetry, the shape difference is connected 

with the diverse location of embedded dimers in the torrid 

zone, at the equator. The fullerenes obtained may be 

named permutation isomers and be denoted as 1111, 

11101 and 11011. Index 1111 indicates that between the 

embedded dimers there is no hexagon sites; index 11101 

points to the fact that only three dimers are the nearest 

neighbors, and index 11011 designates that there are two 

groups of two adjacent dimers.  

5.6. Fullerene C44 of tetrahedral symmetry 

The nearest perfect neighbor is fullerene C40, so fullerene 

C44 contains two extra dimers. It consists of two groups of 

three adjacent pentagons, a chain of six pentagons and 

eleven hexagons, and has twenty-three faces (Fig. 24). 

Therefore, it can be named imperfect penta12-hexa11 poly-

hedron C42 having topological tetrahedral symmetry. 

6. ISOMERS OF FULLERENE C46 

A. ORDINARY SYMMETRY 

There is no isomers C46 having ordinary symmetry [1,2].  

B. TOPOLOGICAL SYMMETRY 

According to the periodic system all six fullerene isomers 

C46 refer to topological symmetry [1], namely, three-fold 

S-symmetry, three-fold T-symmetry, four-, five-, six-fold 

and tetrahedral ones. All of them can be obtained by one 

and the same mechanism, namely, by dimer embedding 

into the nearest neighbor perfect or imperfect fullerene 

which precedes it in the same column.  
Fig. 23. Permutation isomers of fullerene C44 of six-fold sym-

metry: structure, graphs and energy in kJ/mol. 
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6.1. Fullerene of three-fold S-symmetry 

The perfect nearest neighbor is fullerene C44, so fullerene 

C44 must contain one extra dimer. The fullerene was de-

signed in Ref. [15] and is shown in Fig. 25. It contains two 

nonequivalent groups of six adjacent pentagons at the top 

and bottom, and thirteen hexagons. It is a penta12-hexa13 

polyhedron.  

 

6.2. Fullerene of three-fold T-symmetry 

The fullerene can be produced by embedding two dimers 

C2 into the nearest perfect fullerene C42. It consists of two 

trigons, four isolated pentagons, two adjacent pentagons, 

sixteen hexagons and has twenty-four faces (Fig. 26). It is 

a tri2-penta6-hexa16 polyhedron. 

Fig. 24. Two dimers embedding into perfect fullerene C40 having 

tetrahedral symmetry: structure, graphs and energy in kJ/mol. 

C44-11 

E=969 

C44-11 

E=980 

C44-101 

E=919 

E=851 

C44-101 

Fig. 25. Dimer embedding into perfect fullerene C44 of three-fold 

S-symmetry: structure, graphs and energy in kJ/mol. 

C46 

E=932 

E=1252 

C46 

Fig. 26. Two dimers embedding into perfect fullerene C42 having 

three-fold T-symmetry: structure, graphs and energy in kJ/mol. 

 

E=2473  

C46 

E=3790 

C46 
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6.3. Fullerene C46 of four-fold symmetry 

The perfect nearest-neighbor is fullerene C40, so fullerene 

C46 contains three extra dimers. It consists of two tetra-

gons, eight pentagons and fourteen hexagons (Fig. 27). It 

is a tetra2-penta8-hexa14 polyhedron. 

6.4. Fullerene C46 of five-fold symmetry 

The perfect nearest-neighbor is fullerene C40, so fullerene 

C44 must contain three extra dimers. It consists of two tet-

ragons, six pentagons and fourteen hexagons (Fig. 28). It 

is a tetra2-penta8-hexa14 polyhedron. 

6.5. Fullerene C46 of six-fold symmetry 

The perfect nearest-neighbor to fullerene C46 is fullerene 

C36, so fullerene C46 contains five extra dimers. It consists 

of twelve pentagons and twelve hexagons (Fig. 29). It is a 

penta12-hexa12 polyhedron. 

6.6. Fullerene C46 of tetrahedral symmetry  

The nearest perfect neighbor is fullerene C40, so fullerene 

C46 contains three extra dimers. It consists of two groups 

of three adjacent pentagons, a chain of six pentagons and 

eleven hexagons, and has twenty-three faces (Fig. 30). It 

is an imperfect penta12-hexa11 polyhedron having topolog-

ical tetrahedral symmetry. 

The fullerenes obtained may be named permutation 

isomers and be denoted as 111-ring, 111-cobra and 111-

star. Index 111 indicates that there are three embedded di-

mers; the words ring, snake and star characterize their 

Fig. 28. Three dimers embedding into perfect fullerene C40 hav-

ing five-fold symmetry: structure, graphs and energy in kJ/mol. 

 

E=1137 

C46-111 

E=2311 

C46-111 

E=1029 

C46-1101 

E=1775 

C46-1101 

Fig. 29. Five dimers embedding into perfect fullerene C36 having 

six-fold symmetry: structure, graphs and energy in kJ/mol. 
 

C46-11111 

E=1022 

E=1875 

C46-11111 

Fig. 27. Three dimers embedding into perfect fullerene C40 hav-

ing four-fold symmetry: structure, graphs and energy in kJ/mol. 

E=1322 

   C46 

E=2543 

  C46 
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position as shown below. It should be emphasized that 

there are only six possible sites (tetrahedral graph edges). 

The occupied sites are colored red.  

7. ISOMERS OF FULLERENE C48 

A. ORDINARY SYMMETRY 

There are three isomers C48 of ordinary different sym-

metry [1,2], namely, having three-fold T-symmetry, hav-

ing four- and six-fold symmetry. 

7.1. Fullerene of three-fold T-symmetry  

One can design two fullerene isomers of this symmetry by 

two ways: by the fusion of two cupolas C24 and as a result 

of embedding one after another three carbon dimers into 

fullerene C42 [13]. The isomers are shown in Fig. 31. Both 

polyhedrons contain two triangles, six pentagons and 

eighteen hexagons, so they are tri2-penta6-hexa18 polyhe-

drons. Formally they are both fullerenes. However, we ad-

mit that the first isomer is a nanotube. The reason for such 

conclusion is discussed elsewhere [13]. 

7.2. Fullerene C48 of four-fold symmetry 

Similar to the previous case, one can design two fuller-

ene isomers of this symmetry by two ways: by the fusion 

of two cupolas C24 and as a result of embedding one after 

another four carbon dimers into fullerene C40 [18]. The 

isomers are shown in Fig. 32. Both polyhedrons contain 

two tetragons, eight pentagons and sixteen hexagons, so 

they are tetra2-penta8-hexa16 polyhedrons.  

The shape difference is also dictated by the specific 

location of pentagons. The number of pentagons is the 

same, but the first isomer contains isolated pentagons 

along the main axis of symmetry, whereas the pentagons 

of the second one are arranged in adjacent pairs at an an-

gle to this axis. As a result, both isomers look like a sphe-

roid. Probably, because of this they have almost equal 

energy.  

7.3. Fullerene C48 of six-fold symmetry 

As before, one can design two fullerene isomers of this 

symmetry by two different ways: by the fusion of two 

cupolas C24 and as a result of successive embedding six 

carbon dimers into basic perfect fullerene C36 of six-fold 

symmetry. However, for this symmetry there are two 

modes of cupola joining: mirror symmetry and rotation-

reflection one. In the first case the lower cupola is a mir-

ror copy of the upper one. The fullerene obtained consists 

of six tetragons and twenty hexagons; it has twenty-six  

   111-ring    111-cobra    111-star 

E=1070 

C46-111-ring 

E=1167 

C46-111-ring 

E=1042 

C46-111-cobra 

C46-111-cobra 

E=1857 

E=1028 

C46-111-star 

C46-111-star 

E=1748 

Fig. 30. Three ways of three dimers embedding into perfect full-

erene C40: structure, graphs and energy in kJ/mol. 
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faces (Fig. 33). It is a tetra6-hexa20 polyhedron. In the 

second case the lower cupola is a rotatory reflection of 

the upper one. The fullerene obtained contains twelve 

pentagons and ten hexagons, the number of faces being 

the same (Fig. 34). It is a penta12-hexa14 polyhedron. Its 

energy is less than that of the first fullerene. 

Consider the second way of fullerene generation: the 

growth of basic perfect ancestor by successive embed-

ding carbon dimers, the number of dimers being equal to 

the symmetry order. The perfect nearest-neighbor to full-

erene C48 is fullerene C36, so fullerene C48 contains six 

extra dimers. It consists of twelve pentagons and 

E=2914 

 C48 

E=4446 

 C48 

C48 

E=2597  

     E=3569 

C48 

Fig. 31. Fullerene C48 as a result of rotation-reflection symmetry 

fusion of two cupolas C24 having three-fold symmetry and ob-

tained by embedding one after another three carbon dimers into 

perfect fullerene C42; structure, graphs and energy in kJ/mol. 

E=1442 

C48 

E=2500 

C48 

E=1460 

C48 

E=2509 

C48 

Fig. 32. Fullerene C48 as a result of rotation-reflection symmetry 

fusion of two cupolas C24 having four-fold symmetry (above); 

fullerenes C48 obtained by embedding one after another four car-

bon dimers into perfect fullerene C40 (below): structure, graphs 

and energy in kJ/mol. 
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fourteen hexagons (Fig. 35). It is a penta12-hexa14 poly-

hedron. 

There is also the third way of new fullerene genera-

tions: fusion of lesser fullerenes having compatible sym-

metry. In our case there are two fullerenes C24 of six-fold 

symmetry which can be combined for producing fullerene 

C48 (Fig. 36). 

B. TOPOLOGICAL SYMMETRY 

According to the periodic system of fullerenes there are 

three isomers C48 having topological symmetry [1], namely, 

three-fold S-symmetry, five- and tetrahedral ones. All of 

them can be obtained by one and the same mechanism, 

namely, by dimer embedding into the nearest neighbor per-

fect fullerene which precedes it to in the same column.  

7.4. Fullerene of three-fold S-symmetry 

The perfect nearest neighbor to fullerene C48 is fullerene 

C44, so C48 fullerene must contain two extra dimers. There 

are two isomers of fullerene C48 having one and the same 

topological symmetry but different location of dimers. They 

are shown in Fig. 37. Each one contains two nonequivalent 

Fig. 33. Fullerene C48 as a result of the fusion of two cupolas C24 

having six-fold symmetry by mirror symmetry joining: structure, 

graphs and energy in kJ/mol. 

C48-ms 

E=1926 

C48-ms 

E=3854 

Fig. 34. Fullerene C48 as a result of the fusion of two cupolas C24 

having six-fold symmetry by rotation-reflection symmetry join-

ing: structure, graphs and energy in kJ/mol. 

 

C48-rrs 

E=991 

C48-rrs 

E=2582 
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E=991 

C48-111111 

C48-111111 

E=2034 

Fig. 35. Six dimers embedding into perfect fullerene C36 having 

six-fold symmetry; structure, graphs and energy in kJ/mol. 

 

C48-(24+24) 

E=1291 

E=2201 

C48-(24+24) 

Fig. 36. Fullerene C48 as a result of joining two fullerenes C24 

having six-fold symmetry; rotation-reflection symmetry joining: 

structure, graphs and energy in kJ/mol. 

Fig. 37. Two dimers embedding into perfect fullerene C44 of 

three-fold S-symmetry, symmetric embedding and asymmetric 

one: structure, graphs and energy in kJ/mol. 

 

E=1004 

C48-11 

C48-11 

E=1153 

E=940 

C48-101 

C48-101 

E=1077 
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groups of six adjacent pentagons at the top and bottom, and 

thirteen hexagons. However, each one is a penta12-hexa13 

polyhedron.  

The shape difference is connected with the diverse 

location of embedded dimers. The fullerenes obtained 

may be named permutation isomers and be denoted as 11 

and 101. Index 11 indicates that the embedded dimers are 

in one and the same of three possible cylindrical sectors; 

index 101 points to the fact that two dimers are at differ-

ent ones. 

7.5. Fullerene C48 of five-fold symmetry 

The perfect nearest-neighbor is fullerene C40, so fullerene 

C48 must contain four extra dimers. It consists of twelve 

pentagons and fourteen hexagons (Fig. 38). It is a penta12-

hexa14 polyhedron. 

7.6. Fullerene C48 of tetrahedral symmetry 

The nearest perfect neighbor is fullerene C40, so fullerene 

C48 contains four extra dimers. It consists of three or four 

groups of twelve adjacent pentagons and thirteen hexa-

gons (Fig. 39). It is imperfect penta12-hexa13 polyhedron 

C48 having topological tetrahedral symmetry. 

The fullerenes obtained may be named permutation 

isomers and be denoted as 1111-loop and 1111-tadpole. 

Index 1111 indicates that there are four embedded di-

mers; the words loop and tadpole characterize their posi-

tion as shown below. It should be emphasized that there 

are only six possible sites (tetrahedral graph edges). The 

occupied sites are colored red. 

 

Fig. 38. Four dimers embedding into perfect fullerene C40 having 

five-fold symmetry: structure, graphs and energy in kJ/mol. 

 

E=2069 

C48 

E=1141 

C48 

 

  1111-loop 1111-tadpole 

E=1088 

C48-1111-loop 

C48-1111-loop 

E=2040 

C48-111-tadpole 

E=1031 

E=1058 

C48-111-tadpole 

Fig. 39. Two ways of four dimers embedding into perfect fuller-

ene C40 having tetrahedral symmetry: structure, graphs and en-

ergy in kJ/mol. 
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8. DISCUSSION: DIVERSITY 

We begin the discussion with the sketchy description of 

main ideas and notions. 

Natural mechanisms of generation. Previously [6] 

we have systematized possible ways of forming the iso-

mers of midi-fullerenes from C30 to C40. We have found 

that there are three the most natural mechanisms of their 

formation:  

1) Embedding carbon dimers into initial fullerenes;  

2) Fusion of carbon cupolas having the same sym-

metry;  

3) Fusion of fullerenes having compatible symmetry.  

Just the same mechanisms are valid for the fullerenes 

in the interval from C40 to C48.  

Perfect and imperfect fullerenes. In Tables 1 and 2, 

the calculated energies of fullerene C40 are presented for 

different isomers, the minimum and maximum energies 

being designated with bold and italic figures, respectively.  

From the very beginning we have divided the fuller-

enes into two groups: the perfect fullerenes of ordinary 

symmetry and imperfect ones of topological symmetry.  

Single and double bonds. In its turn each group con-

tains the fullerenes with single bonds only and with single 

and double bonds simultaneously; both kinds forming sub-

groups. We assume that the symmetry of double bonds lo-

cation about the major axis of cupolas and fullerenes co-

incides with that of fullerene C60. Using this postulate, we 

have all the necessary input data for the optimization of 

the fullerene and cupola structures designed by means of 

geometric modeling [19] and for subsequent calculation of 

their energy. The optimized structures of the fullerenes 

were obtained through the use of Avogadro package [20].  

Expected results and customary explanation. Con-

sider at first the energy of C40-fullerene isomers having or-

dinary symmetry (Table 1). One can see that the energy of 

single-bonds fullerenes is always less than that of single-

double-bonds ones. It is not strange because the energy of 

a single bond is 82 kcal and that of a double bond is 

147 kcal [21]. In each subgroup the largest energy is at-

tributed to the fullerene of five-fold symmetry containing 

tetragons (M-fusion). This phenomenon was analyzed in 

Ref. [22]. The reason is connected with the well-known 

fact: the more is the curvature of fullerene surface, the 

more is its distortion energy. In its turn a local curvature 

is defined by the sum of adjacent angles having a common 

vertex. The less is the sum, the more is the curvature, and 

therefore the more is a local stress concentration. The full-

erene C40 of configuration shown in Fig. 2 (M-fusion) has 

five tetragons, each of them having four vertices where the 

angle sum is 90° + 2·120° = 330°. By contrast, the fuller-

ene C40 presented in Fig. 3 (RR-fusion) contains ten pen-

tagons, each of them having four vertices where the angle 

sum is 2·108° +120° = 336°. Therefore, the second con-

figuration has lesser curvature and so the lesser energy. 

Unexpected results. The results of the last two col-

umns of Table 1 deserve detailed consideration. It is 

known that cluster C60 forms at high temperature, so its 

structure is far removed from that of ideal Buckminster 

fullerene having Ih icosahedral symmetry [13]. It is as-

sumed that annealing removes defects and reduces the po-

tential energy of the cluster through the use of the Stone-

Wales transformation [11].  

In our case there are no defects in the initial fullerene 

C40 of C3-symmetry (3-6-fold symmetry fusion). Here the 

Stone-Wales transformation induces only symmetry tran-

sition from C3 to T-symmetry (tetrahedral symmetry). Yet 

this leads to decreasing the energy for the fullerene with 

single and double bonds. What is the reason? 

Repulsion of valence electron pairs. More than 

eighty years ago, in 1940 Sidgwick and Powell supposed 

that the geometry of a forming molecule is dictated by re-

pulsion of valence electron pairs [21,23]. This statement 

was developed into the system of rules which were named 

Table 1. Energy of fullerene C40 of ordinary symmetry in kJ/mol. 

C40 4-fold 

16+24 cupolas  

fusion 

5-fold 

20+20 cupolas 

M-fusion 

5-fold 

20+20 cupolas 

RR-fusion 

3-6-fold 

18+22 cupolas 

fusion 

Stone-Wales 

transformation 

(18+22) 

E max 2051 3181 1808 1475 1326 

E min 1439 1694 1210 946 961 

ΔE 612 1487 1538 604 365 

Table 2. Energy of fullerene C40 of topological symmetry in kJ/mol. 

C40 3S-symmetry  

embedded 1 

6-symmetry 

embedded 11 

6-symmetry 

embedded 101 

6-symmetry 

embedded 1001 

E max 1410 2016 1755 1778 

E min 1015 921 960 960 

ΔE 395 1095 795 818 
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the theory of repelling valence electron pairs. The main 

rule is formulated as follows. Electron pairs arrange them-

selves inside the valence shell of an atom into such con-

figuration which ensures their maximal removing from 

each other. At that, the electrons pairs behave themselves 

as if they were repelling each other similar to point 

charges. The assumption is in a good agreement with ex-

perimental data for more than 1500 molecules studied. If 

to present each electron pair as a point and to connect the 

points by direct lines, one obtains the electronic configu-

ration of chemical bonds [21,23]. Each electronic config-

uration dictates a definite space molecular structure.  

The theory of repelling valent electron pairs was for a 

long time in the shadow of quantum mechanics. The situ-

ation became paradoxical. The repelling theory correctly 

predicts the shape, but says nothing about the charge value 

of electron pairs. At the same time, quantum mechanics 

can predict fairly accurately the energy of a molecule, but 

strictly speaking says nothing about the shape of a mole-

cule. Here “it is possible to predict the shape of any mole-

cule only by comparison of the energies of different 

would-be configurations” [21].  

Shared and unshared electron pairs. At first, in the 

theory of repelling valence electron pairs it was supposed 

that all the electrons pairs, binding and unbinding, are 

equivalent. Later it turned out that unbinding (unshared) 

electron pairs have a larger charge than binding (shared) 

ones [21,24].  

Electronic structure of fullerenes. In fullerene C26 of 

C3h-symmetry there are two groups of atoms having dif-

ferent electronic structure: two apex atoms and their three 

nearest neighbors, and all other ones [5]. The first group 

of eight atoms consists of sp3 hybridized atoms; the second 

one contains sp2 hybridized atoms. The atoms of the first 

group have unshared electron pairs. 

In the case of the fullerene C40 of T-symmetry with 

single and double bonds, there are four apex sp3 hybrid-

ized atoms (Figs. 6, 7). The other thirty-six atoms are sp2 

hybridized ones as usually accepted. The apex atoms have 

unshared electron pairs with charge larger than that of 

other atoms [24].  

The optimized molecular structures of the fullerenes 

obtained by Avogadro package [20] are restricted with the 

space location of atoms; they do not contain electronic 

structure. However, knowing the atom positions, one is 

able to design the electronic structure through the use of 

the procedure developed in Ref. [25]. 

In Fig. 40 the electronic configuration of bond charges 

for fullerene C40 of T-symmetry with single and double 

bonds before and after the Stone-Wales transformation is 

shown. One can see that here the Stone-Wales transfor-

mation is dictated by the repulsion of unshared electron 

pairs. As a result, the irregular tetrahedron of unshared 

 

Before SW  

transformation 

After SW  

transformation 

       before                               after 

Unshared electron pairs 

Fig. 40. Electronic structure of fullerene C40 before and after 

Stone-Wales transformation. 
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electron pairs transforms into the regular tetrahedron with 

all edges being equal, and that leads to the decreasing of 

the energy. 

However, for the fullerene with only single bonds the 

result is reverse. What is the reason? 

Conformations. It is known that there are three types 

of molecule motion [26]: 

• electron motion relative to atoms; 

• periodic changes of the relative locations of nuclei (vi-

bratory motion of molecules); 

• periodic orientation changing of a molecule as a whole 

(rotational motion). 

In the last case two parts of a molecule can rotate relative 

to each other to a large angle. As this takes place, a mole-

cule cannot be considered as a quasi-solid. Contrary to the 

vibrations of small amplitude near an equilibrium posi-

tion, the rotary motion realizes itself as a periodic internal 

movement of large amplitude and small frequency. Here 

we have at least two minima of the potential energy. The 

internal rotation plays a key role in forming configurations 

of chain molecule and macromolecules [27]. Their stable 

configurations are usually spoken as conformations. They 

are studied for a long time and well known. At the same 

time the conformations of cyclic hydrocarbon molecules, 

e.g., cyclohexane, are less known.  

Cyclohexane conformations. At first, cyclohexane 

C6H12 was depicted as a molecule having a plane carbon 

ring. Later Odd Hassel, the future Nobel Prize winner in 

chemistry 1969, has shown that this was not true [28]. He 

has established that cyclohexane had two conformations: 

in the form of a chair or a boat, the first conformation be-

ing predominant [29]. The highly symmetric ‘chair’ con-

figuration belongs to the symmetry group D3d (Fig. 41a). 

Here [30] four carbon atoms lie in one plane, two others 

are disposed bilaterally along the plane, all the valence an-

gles CCC are tetrahedral, and all the C−H bonds of neigh-

boring methylene groups are disposed in chess order with 

respect to each other. From twelve C−H bonds, six bonds 

are axial and parallel to the symmetry axis of the third or-

der; other six bonds are equatorial. Geometric parameters 

of the molecule are (C C) 1.54r − =  Å. The chair is a stable 

conformation of cyclohexane. Another conformation is a 

boat (or a bath) which belongs to the symmetry group C2v 

(Fig. 41b). It is unstable and at room temperature only one 

molecule from a thousand has a boat conformation. Chem-

ical and physical methods are unable to fix each confor-

mation separately; they see only an average picture. It is 

worth noting that similar conformations were observed in 

semiconductors as static configurations [31]. 

Conformations and loss of stability. Consider the 

problem of conformation transitions in the context of the 

stability theory [32]. To bend a hexagon around any axis 

of C6 symmetry, it is necessary to apply forces similar to 

those shown in Fig. 42a. If the bending leads to equilib-

rium state, one obtains a boat conformation. In terms of 

the stability theory, it means the stability loss of a fist har-

monic (mode). One may imagine also the stability loss of 

a second harmonic (mode) as shown in Fig. 42b. In this 

case one obtains a chair conformation. The preference de-

pends on elasticity modules and applied forces. The forces 

arise due to electron pairs interaction as well as due to 

thermal vibrations of atoms (thermal forces). 

One can estimate these forces. According to [24] the 

bond charges for C−C and C−H bonds are equal to 0.189e 

and 0.077e, respectively, where e is the electron charge. 

Consequently, the electrostatic interaction energy for elec-

tron pairs of C−C bonds equals ~0.28eV, whereas the elec-

trostatic interaction energy for electron pairs of C−H 

bonds is only ~0.03 eV. The thermal motion energy is .kT  

At −100 °C, 300 °C and 1200 °C it is ~0.014eV, ~0.05eV 

and ~0.1eV, respectively. Therefore, at low temperatures, 

where a molecule has a regular form, this structure is sup-

ported by electric forces. At high temperatures, the ther-

mal motion of hydrogen atoms is the main destabilizing 

factor [29]. This motion changes H−C−H valence angles 

and, as a consequence, the regular form of a molecule. 

Thermal motion is chaotic one. The second mode is 

more chaotic than the first one, which is highly correlated. 

Consequently, if the temperature increases, the 

 

a) 

b) 

Fig. 41. Structure of a cyclohexane molecule: a) chair confor-

mation, b) boat conformation. Large spheres are carbon atoms, 

small spheres are hydrogen atoms. 
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appearance of the second thermal mode becomes more 

probable than the first thermal one. In essence, the second 

mode is torsion [29], and this circumstance gives satisfac-

tory explanation of the conformation transitions. 

One of the authors of this paper together with co-work-

ers has found through the use of the new bond-charge mo-

lecular dynamics [33,34] that the chair and boat confor-

mations can be formed in fullerene C60 at room and higher 

temperatures [35]. To gain greater insight into this phenom-

enon, our team has studied conformation transitions in 

small cyclic hydrocarbon molecules, C6H12, C6H6, C10H8, 

C10H2, C10, C13H9 and C14H10 [29,35,36]. In addition to 

other details, it turned out that the circular molecule C13H9 

is more rigid and is able to conserve its quasi-plane config-

uration at low and room temperatures contrary to the linear 

molecule C14H10 that is stable only at low temperatures. It 

is pertinent to note that the circular molecule has chair con-

formations whereas the linear molecule has boat ones. 

Now consider the unusual results for the 3-6-fold sym-

metry fullerene with only single bonds and its Stone-

Wales transformation (Table 1). Look at the input and out-

put fullerene images on an enlarged scale given by Avo-

gadro package (Fig. 43). We expected that after the Stone-

Wales transformation the energy of fullerene will de-

crease. Contrary to the expectations the effect is reverse. 

The plausible explanation is as follows. 

The structure of fullerenes contains the sequences of 

hexagons. Close inspection of Fig. 43 shows that the hexa-

gon clusters are different (Fig. 44). The input fullerene has 

a) 

b) 

x 

z 

y 

Fig. 42. Stability loss of a hexagon under the action of applied 

forces. 

a) 

b) 

Fig. 43. 3-6-fold symmetry fullerene before (a) and after (b) 

Stone-Wales transformation. 

 

Before SW 

transformation 

After SW 

transformation 

Fig. 44. Hexagon clusters of 3-6-fold symmetry fullerene before 

and after Stone-Wales transformation. 
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the clusters which are similar to a circular molecule C13H9, 

the output one to a linear molecule C14H10. In the first case 

the hexagons have a chair conformation; in the second case 

they have a boat one. The energy of the boat conformation 

is a little lager than that of the chair one [24]. This fact ex-

plains the result of the Stone-Wales transformation. 

Now consider the energy of C40-fullerene isomers of 

topological symmetry (Table 2). We see that, as before, 

the energy of single-bond fullerenes is always lower than 

the energy of single-double-bond ones. It is because the 

energy of a single bond is lower than that of a double bond. 

In the E max series the lowest energy is attributed to the 

fullerene of three-fold S-symmetry containing only one 

embedded dimer. The highest energy refers to the fuller-

ene of six-fold symmetry with two dimers being the near-

est neighbors. It seems that this phenomenon, as before, is 

connected with different curvature of fullerene surface. In 

the E min series variations of energy may be attributed to 

the conformations of hexagons which create “unsmoot-

ness” energy. The more is the number of chair confor-

mations, the lower is the energy. 

9. DISCUSSION: GENERAL FEATURES 

We have discussed the peculiar properties of different iso-

mers of fullerene C40. Now consider what the isomers of 

other fullerenes have in common. Their calculated ener-

gies are presented in Tables 3–7, as before, the minimum 

and maximum energies being designated with bold and 

italic figures, respectively. 

From Tables 3–6 we observe that 3-fold T-symmetry 

fullerenes C42, C44, C46 and C48 have the highest energy. 

The reason is connected with the local curvature effect 

considered above. All the fullerenes of this symmetry have 

Table 3. Energy of fullerene C42 of topological symmetry in kJ/mol. 

C42 3S-sym. 3T-sym. 4-sym. 5-sym.  6-sym. 111 6-sym. 1101 6-sym. 10101 tetrahedral sym. 

E max 1256 4253 2519 2755 1894 1866 1960 936 

E min 999 2741 1323 1372 933 948 1042 740 

ΔE 257 1512 1196 1183 961 918 918 196 

Table 4. Energy of fullerene C44 of ordinary and topological symmetry in kJ/mol. 

C42 3S-sym. 3T-sym. 4-sym. (a) 4-sym. (b) 5-sym. 

11 

5-sym. 

101 

6-sym. 

1111 

6-sym. 

11101 

6-sym.  

11011 

tetrahedral 

sym. 11 

tetrahedral 

sym. 101 

E max 1868 4025 2533 2586 2591 2591 2190 1664 2081 980 919 

E min 900 2571 1323 1343 1243 1070 1073 1044 976 969 851 

ΔE 968 1454 1210 1243 1348 1521 1117 620 1105  11   68 

Table 5. Energy of fullerene C46 of topological symmetry in kJ/mol. 

C46 3S-sym. 3T-sym. 4-sym. 5-sym. 

111 

5-sym. 

1101 

6-sym. 

11111 

tetrahedral sym. 

111-ring 

tetrahedral sym. 

111-cobra 

tetrahedral sym. 

111-star 

E max 1252 3790 2543 2311 1775 1875 980 919 1748 

E min 932 2473 1322 1137 1029 1022 969 851 1028 

ΔE 320 1317 1221 1174 746 853 11 68 720 

Table 6. Energy of fullerene C48 of ordinary symmetry in kJ/mol. 

C48 3T-sym. fusion 3T-sym. embed.  4-sym. fusion 4-sym. embed. 6M-sym. 

fusion 

6RR-sym. 

fusion 

6-sym. 

111 111 

6-sym. fusion 

(fullerenes) 

E max 4446 3569 2500 2509 3854 2582 2034 2201 

E min 2914 2597 1442 1460 1926 991 991 1291 

ΔE 1534 972 1008 949 1928 1491 1043 910 

Table 7. Energy of fullerene C48 of topological symmetry in kJ/mol. 

C48 3S-sym. 11 3S-sym. 101 5 sym. 1111 tetrahedral sym. 1111-loop tetrahedral sym. 1111-tadpole 

E max 1153 1077 2069 2040 1058 

E min 1004 940 1141 1088 1031 

ΔE 149 137 928 952 27 
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two trigons, each of them having three vertices where the 

angle sum is 60° + 2·120° = 300°. The smaller the sum, 

the greater the curvature, and therefore the greater the lo-

cal stress concentration and the general energy. This effect 

does not depend on whether the fullerene has both single 

and double bonds or only single bonds. 

From Tables 3–7 we also see that fullerenes of tetrahe-

dral symmetry C42, C44, C46 and C48 with single and double 

bonds have the lowest energy. This phenomenon fits well 

with the main principle of geometric modeling [19] “the 

minimum surface at the maximum volume”. This ten-

dency is breaking down for the fullerenes with single 

bonds only, beginning with fullerene C46. The reason is the 

“unsmoothness effect” considered above. The more di-

mers are embedded, the closer the fullerene surface to a 

sphere. However, the hexagons of different isomers take 

the conformation which depends on the surroundings. At 

the same time, since the difference between the energies 

of boat and chair conformation is small [24], the final en-

ergies are close to each other. Indeed, the energies of the 

isomers of fullerene C46, having the 5-fold symmetry 

1101, 6-fold symmetry 11111, tetrahedral symmetry 111 

ring, cobra and star, are 1029, 1022, 1070, 1042 and 

1028 kJ/mol. The difference is insignificant.   

10.  CONCLUSION 

We have designed possible structures of the isomers of 

midi-fullerenes, namely C40, C42, C44, C46 and C48. Three 

the most natural mechanisms of their formation were used: 

fusion of carbon cupolas having the same symmetry, fu-

sion of fullerenes having compatible symmetry and em-

bedding carbon dimers into initial fullerenes. The energies 

of the fullerenes were calculated through the use of the 

molecular mechanics package “Avogadro”, being pre-

sented together with their graphs. It is found that in the 

majority of cases the minimum-energy fullerenes are 

those, which have tetrahedral symmetries. The maximum-

energy fullerenes refer to the three-fold T-symmetry. 

It should be emphasized that both molecular mechan-

ics and molecular dynamics uses the empirical potentials 

which incorporate not only direct interatomic interactions 

but a lot of indirect ones [37–40]. The potentials do not 

contain electron characteristics of a system in an explicit 

form; instead, one forgets nuclei, electrons, ions and says 

about atoms and their interactions [41]. Such averaging re-

quires knowledge of force constants specific for the cer-

tain chemical environments. Because of its variety, the 

number of force constants becomes very large. Neverthe-

less, such approach allows obtain the shape and energy of 

molecules, including fullerenes.  

To obtain does not denote to understand. The effort to 

integrate the strong parts of molecular dynamics with the 

Sidgwick-Powell theory was done in Ref. [33]. It is as-

sumed that the Sidgwick-Powell point charges can be con-

sidered as oscillators. In other words, one can think of a 

bond-charge as a dynamical variable to some extent inde-

pendent of its own bond. In this case each bond-charge 

plays the role of an external field with respect to other 

bond-charges and these fields polarize the bond. Imagin-

ing each bond-charge as a harmonic oscillator, it is possi-

ble to write down two systems of the motion equations: 

one, as before, for atoms and another, new, for electrons, 

the two systems being dependent on each other [42,43]. 

Such approach drastically decreases the number of input 

parameters which are necessary for solving the problem of 

molecular structures. It should be emphasized that input 

parameters (force constants) can be calculated on the basis 

of the electronic theory of molecule vibrations [24] using 

a small quantity of spectroscopic data. This new molecular 

dynamics [42,43] has different names: bond-charge mo-

lecular dynamics, electronic-molecular dynamics or elelar 

dynamics.  

One of the striking results afforded by elelar dynamics 

is as follows. In general, the electronic and atomic struc-

tures do not coincide; at that, the electronic structure de-

fines the shape of atomic configuration and we have so 

called hidden symmetry [29]. In this research, for some 

reasons, the simpler molecular mechanics was used in-

stead of elelar dynamics. However, to gain a more pene-

trating insight into the results obtained, we were com-

pelled sometimes to return to electronic structure and to 

use the data which were previously obtained through the 

use of elelar dynamics. 
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Классификация изомеров фуллеренов от C40 до C48 
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1 Санкт-Петербургская академия наук по проблемам прочности, Санкт-Петербургский политехнический университет Петра 

Великого, ул. Политехническая, 29, 195251, Санкт-Петербург, Россия 
2 Высшая школа механики и процессов управления, Санкт-Петербургский политехнический университет Петра Великого, 

ул. Политехническая, 29, 195251, Санкт-Петербург, Россия 
3 Кафедра физики, Санкт-Петербургский политехнический университет Петра Великого, ул. Политехническая, 29, 195251, 

Санкт-Петербург, Россия 

 

Аннотация. Мы сконструировали возможные структуры миди-фуллеренов, а именно C40, C42, C44, C46 и C48, используя три 

наиболее естественных механизма их образования: слияние углеродных куполообразных полуфуллеренов одной и той же 

симметрии, слияние фуллеренов, обладающих совместимой симметрией, и внедрение углеродных димеров в исходный фул-

лерен. Энергии образовавшихся фуллеренов были вычислены методом молекулярной механики. Они представлены в статье 

вместе с графами, характеризующими структуру. Обнаружено, что минимальной энергией обладают фуллерены тетраэдри-

ческой симметрии, а максимальной − фуллерены с Т-симметрией третьего порядка. 
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